SUR2 subtype (A and B)-dependent differential activation of the cloned ATP-sensitive K+ channels by pinacidil and nicorandil.

نویسندگان

  • T Shindo
  • M Yamada
  • S Isomoto
  • Y Horio
  • Y Kurachi
چکیده

1. The classical ATP sensitive K+ (K(ATP)) channels are composed of a sulphonylurea receptor (SUR) and an inward rectifying K+ channel subunit (BIR/Kir6.2). They are the targets of vasorelaxant agents called K+ channel openers, such as pinacidil and nicorandil. 2. In order to examine the tissue selectivity of pinacidil and nicorandil, in vitro, we compared the effects of these agents on cardiac type (SUR2A/Kir6.2) and vascular smooth muscle type (SUR2B/Kir6.2) of the K(ATP) channels heterologously expressed in HEK293T cells, a human embryonic kidney cell line, by using the patch-clamp method. 3. In the cell-attached recordings (145 mM K+ in the pipette), pinacidil and nicorandil activated a weakly inwardly-rectifying, glibenclamide-sensitive 80 pS K+ channel in both the transfected cells. 4. In the whole-cell configuration, pinacidil showed a similar potency in activating the SUR2B/Kir6.2 and SUR2A/Kir6.2 channels (EC50 of approximately 2 and approximately 10 microM, respectively). On the other hand, nicorandil activated the SUR2B/Kir6.2 channel > 100 times more potently than the SUR2A/Kir6.2 (EC50 of approximately 10 microM and > 500 microM, respectively). 5. Thus, nicorandil, but not pinacidil, preferentially activates the K(ATP) channels containing SUR2B. Because SUR2A and SUR2B are diverse only in 42 amino acids at their C-terminal ends, it is strongly suggested that this short part of SUR2B may play a critical role in the action of nicorandil on the vascular type classical K(ATP) channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Family of Sulfonylurea Receptors Determines the Pharmacological Properties of ATP-Sensitive K+ Channels

We have cloned an isoform of the sulfonylurea receptor (SUR), designated SUR2. Coexpression of SUR2 and the inward rectifier K+ channel subunit Kir6.2 in COS1 cells reconstitutes the properties of K(ATP) channels described in cardiac and skeletal muscle. The SUR2/Kir6.2 channel is less sensitive than the SUR/Kir6.2 channel (the pancreatic beta cell KATP channel) to both ATP and the sulfonylurea...

متن کامل

Effect of ATP-sensitive potassium channel agonists on ventricular remodeling in healed rat infarcts.

OBJECTIVES The purpose of this study was to determine whether ATP-sensitive potassium (K(ATP)) channel agonists exert a beneficial effect on the structural, functional, and molecular features of the remodeling heart in infarcted rats. BACKGROUND Myocardial K(ATP) channels have been implicated in the ventricular remodeling after myocardial infarction by inhibition of 70-kDa S6 (p70S6) kinase. ...

متن کامل

Structural basis for the interference between nicorandil and sulfonylurea action.

Nicorandil is a new antianginal agent that potentially may be used to treat the cardiovascular side effects of diabetes. It is both a nitric oxide donor and an opener of ATP-sensitive K(+) (K(ATP)) channels in muscle and thereby causes vasodilation of the coronary vasculature. The aim of this study was to investigate the domains of the K(ATP) channel involved in nicorandil activity and to deter...

متن کامل

Vasodilation induced by oxygen/glucose deprivation is attenuated in cerebral arteries of SUR2 null mice.

Physiological functions of arterial smooth muscle cell ATP-sensitive K(+) (K(ATP)) channels, which are composed of inwardly rectifying K(+) channel 6.1 and sulfonylurea receptor (SUR)-2 subunits, during metabolic inhibition are unresolved. In the present study, we used a genetic model to investigate the physiological functions of SUR2-containing K(ATP) channels in mediating vasodilation to hypo...

متن کامل

Sulfonylurea receptor-dependent and -independent pathways mediate vasodilation induced by ATP-sensitive K+ channel openers.

ATP-sensitive K+ (KATP) channel openers are vasodilators that activate both plasma membrane and mitochondrial KATP channels. Here, we investigated the molecular mechanisms by which diazoxide and pinacidil induce vasodilation by studying diameter regulation of wild-type [SUR2(+/+)] and sulfonylurea receptor (SUR) 2-deficient [SUR2(-/-)] mouse myogenic mesenteric arteries. Ryanodine (10 microM), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • British journal of pharmacology

دوره 124 5  شماره 

صفحات  -

تاریخ انتشار 1998